MEGHANA V HONNATTI

9155, Judicial Drive, Apt # 5507, San Diego, CA 92122

Meghana.Honnatti@gmail.com

OBJECTIVE

To obtain a full-time position related to research and product development in the medical device and bioengineering sector that leverages my skills in micro- and nanotechnology, MEMS, microfluidics and lab-on-a-chip devices.

TECHNICAL SKILLS

• Microfabrication:

- **Processing:** Class 1,000-100,000 cleanroom; Process plan; Mask layout, printing; Photolithography; Physical Vapor Deposition (sputtering, thermal evaporation of metal thin films); Electroplating; Wet/dry etching (Reactive Ion Etch, microwave and RF plasma etching); Soft lithography; Wafer cleaning; Surface modification (plasma treatment and PEG triblock copolymer)
- **Testing and Characterization:** Scanning Electron Microscope, Umech MEMS Motion Analyzer, Nanospec thin film measurement system, Surface profilometer, Contact angle goniometer, Syringe pump

• Biomedical Engineering:

- **Bioinstrumentation:** Micro/nanomanipulation; Micro/nanoinjection; Electrophysiology (patch clamping, carbon fiber amperometry); Electrochemistry; Optical microscopy (confocal, fluorescence, DIC); Micropipette puller
- **Biology:** Cytotoxicity assays, Fluorescence labeling (FM, Fura, Mitotracker, Lysotracker, Texas Red, PI); Antibody labeling (biotin/streptavidin complex); Cell culture (Normal Rat Kidney, INS-1, Bovine Adrenal Chromaffin cells); Cytometry

• Electrical Engineering:

Signal, image and sound processing; Statistical data analysis; Digital & analog circuit design

• Computer Skills:

AutoCAD, Freehand, SolidWorks, LASI, PULSE, Igor Pro, MATLAB, C, C++, Visual Basic, EndNote, Microsoft Office (Word, Excel, PowerPoint, Project)

WORK EXPERIENCE

Zyvex Corporation, Richardson, TX Biomedical Engineer

Nov 2005 - May 2007

• Microfabrication for Neural Engineering Applications

- DARPA DSO funded program for developing neural interfaces for prosthetic upper limb.
- Designed and microfabricated implantable SU-8/Au MEMS multi-electrode arrays and conducted growth curve experiments with NRK cells to test for *in vitro* biocompatibility.
- Designed and fabricated implantable SU-8 regenerative multielectrode interfaces and assembled them to form 3dimensional implants for increased contact area with neurons.
- Built and tested planar and 3-dimensional polymeric nerve guides for in vitro and in vivo studies.
- Contributed to brainstorming, designing and troubleshooting stages of the fabrication of glass multielectrode arrays.

• Nanomanipulator Applications & Product Development

- **Product Development:** Coordinated product transition from generation 1 to 3 through collaborations, customer feedback, attending trade shows and conferences and through interactions with design and sales & marketing teams.
- Applications Development: Led nanomanipulator applications development such as cellular nanosurgery, nanoinjection and directed cellular manipulation by leading experimentation and end-effector development.
- Performed drift measurements on nanomanipulator motors using the Umech motion analyzer and in-house developed Michelson's Interferometer.
- Facilitated new equipment ordering, set-up, calibration, training, SOP and super user.

• Other Projects

- Built a bench-top prototype of an orthopedic sensor for daily wireless monitoring of bone growth in patients with congenital bone deformities; tested for read distance, accuracy and repeatability.
- Conducted in vitro growth curve experiments for NRK cells in single-walled carbon nanotube dispersions.
- Coordinated routinely with a multidisciplinary team consisting of chemists, molecular biologists, engineers, neuroscientists and surgeons in industry, university and hospitals.
- Participated in new product development through prototype building, market research and literature review.
- Generated data for and presented at conferences, quarterly reviews; Trained and mentored colleagues and interns.

Engineered a method for accurate measurement of the departioning rate constants of fluorescent markers from cell membranes; the measured rate was 10X faster than by previous methods. Optimized the designs to reduce data variability (~75%), testing time (>50%) and analysis time (~70%) and

BioMEMS Device Fabrication and Testing

Dalton Cardiovascular Research Center, Columbia, MO.

• Optimized the designs to reduce data variability (~75%), testing time (>50%) and analysis time (~70%), and improve exchange rate (10X faster).

• Designed and fabricated poly(dimethylsiloxane) (PDMS) microfluidic channels; performed photolithographic

• Developed software algorithms in Igor Pro for data analysis.

patterning, replica molding and surface modifications.

• Other Projects

Research Assistant

- Performed electrical and amperometric characterization of Au and Ag electrodes on micromachined silicon biochips and subsequent neurostimulation and recording of neurotransmitters in endocrine cells.
- Performed electrochemical characterization of titanium nitride and diamond like carbon by amperometry and cyclic voltammetry.
- Conducted single cell patch-clamping experiments to obtain membrane capacitance measurements.

• Devised a method for rapid solution exchange time around a cell and the measurement thereof.

• Trained and mentored PhD and undergraduate students on microfluidic device design, processing and testing.

EDUCATION

MS in Electrical Engineering, GPA: 3.6/4.0 University of Missouri – Columbia, USA Thesis Title: Microfluidic Devices for Rapid Solution Exchange

BE in Electronics Engineering, GPA: 3.7/4.0 Pune University, India

PUBLICATIONS & PRESENTATIONS

- 1. T. Kmecko, **M. Honnatti** and G. Hughes. "Three-dimensional Carbon Nanotube Hybrid Neural Interface for Efficient Charge Transport", **Nanotech 2007**, 10th Annual Meeting, Santa Clara, CA, May 2007.
- 2. K. Colinjivadi, J.B. Lee, Meghana Honnatti, R. Draper, M. Ellis, G. Skidmore, and G. Hughes, "Polymer microgrippers as end-effectors for biological sample manipulation," ASME IMECE 2006 Conference, Chicago, IL, Nov. 2006.
- H. Hu, M. Honnatti, K. D. Gillis, "Microfluidic device for rapid solution exchange to study kinetics of cell physiology", American Physics Society (APS), 59th Annual Meeting of the APS Division of Fluid Dynamics, Tampa Bay, FL, Nov. 2006.
- M. Honnatti, S. Bhattacharya, S. Gangopadhyay, K. D. Gillis. "Measurement of the Kinetics of Dye Dissociation using Microfluidic Devices", Biomedical Engineering Society (BMES), 15th Annual Fall Meeting, Philadelphia, PA, Oct. 2004.
- 5. G. A Hughes, M. Honnatti, "Profile on Zyvex Corporation", Nanomedicine, June 2006, Vol. 1, No. 1, Pages 139-143.
- 6. M. Honnatti, G. Hughes, "Intracellular Nanosurgery" Application Note 9721.
- 7. M. Honnatti, G. Hughes, K. Colinjivadi, J. B. Lee, "Directed Cellular Manipulation using Polymer Grippers" Application Note 9720.
- 8. **M. Honnatti**, G. Hughes, R. Draper, "Enabling Subcellular Nanosurgery: An Application Overview", Application Note 9719.

Aug 2002 – Dec 2004

Advisor: Dr. Kevin D. Gillis

Aug 1998 – May 2002