Weibin Zhang

California NanoSystems Institute (CNSI), University of California, Santa Barbara (UCSB)

785 Camino Del Sur, #18, Goleta, CA 93117

weibin@engineering.ucsb.edu Availability: March 2007 Office: 805-893-7849 Cell: 805-451-0375 Status: Unrestricted work authorization in US

Job Goal

Full time industry research or engineering position related to MEMS/NEMS technology

Summary of Qualification

- Responsible, independent, positive, and easy-going team player and problem solver
- In-depth theoretic understanding of multi-physics among mechanics, electronics, and magnetics
- Expert in system modeling and simulation
- 5 years of fabrication experience in S100 clean-room and 5 years of MEMS characterization experience at the University of California, Santa Barbara
- Specialize in MEMS resonator based mechanical sensors: mass sensors, inertia sensors (accelerometers and gyros), AFM and frequency filters, with extended interests in sensing in micro-fluidics and bioengineering

Skills

Micro	o/Nano fabrication				
L	ithography	Dry RIE Etching/Wet Etchin	g PECVD		
S	EM	Flip-Chip Bonding	SUSS Wafer Bonding		
E	-Beam Evaporation	Thin Film Sputtering	Electroplating		
А	.FM	CMP	1 0		
Mult	i-physic system modeli	ng and simulation			
A	NSYS	COMSOL(FEMLAB)	MATLAB	MATLAB	
А	THENA	H-Spice	Mentographic	Mentographic	
L	-Edit	AutoCAD	SolidWorks		
Micro	osystem testing and ch	aracterization			
L L Education	aser Interferometry abView Programming	Spectrum Analyzer (Network	c Analyzer)		
Ph. D	• University of Californ	iia, Santa Barbara D	ec. 2006	CGPA: 3.85/4.00	
	Major: Mechanical Engineering				
	Topics: In-Fluid Dyna High-Q MEM Committee: K. L. Tur	amics of Micro Resonators and i IS Resonators and Quality Factor ner, N. C. MacDonald, D. R. Cla	its AFM Applicat or Prediction arke and H. Soh.	ions	
M. S.	Mechanical Engineer	ing, Peking University, China	Jun. 1999	CGPA: 4.00/4.00	
	Topics: Lateral MEMS	Gyro Design Optimization			
B. S.	Mechanical Engineer	ing, Peking University, China	Jun. 1996	CGPA: 3.90/4.00	

Professional Experiences

9/2006-Present Postdoctoral Researcher, Turner MEMS Group, California NanoSystems Institute

- Design and optimize gecko-inspired reversible adhesive
 - Design and fabricate hierarchic deformation structure (Nano-hair on flexible MEMS platforms) to achieve intimate contact between surfaces
 - Employ bimorph mechanism and apply magnetic field on ferromagnetic materials for improved peeling detachment
 - Optimize MEMS platform design and the nano-wire growth for increased frictionenhanced adhesion
 - o Potential application: Gecko-inspired robot with improved attachment and detachment

2001-2006 Ph. D. Research Assistant, University of California at Santa Barbara

Investigate the in-fluid dynamics of flexural MEMS resonators

- Experimentally explore the relationship between fluid damping and resonator design parameters (resonant frequency, dimension, and geometry) using silicon cantilevers
- Simulate the in-fluid dynamics using the ALE algorithm in COMSOL
- Theoretically derive a linear fluid damping and a quadratic loading model based on the Navier-Stokes equations and asymptotic approximations of the Bessel functions
- o Obtain consistent results from experiments, simulations and theory
- Potential applications: Tapping-mode AFM design, cantilever based mass sensors, fluid pressure sensors, and viscosity sensors
- Predict the overall Q-factor and design high-Q MEMS resonators with applications to mechanical frequency filters
 - Experimentally examine the Q-factor dependence on different energy-losing mechanisms: thermo-elastic damping, support damping, surface damping, fluid damping, and squeezed film damping
 - Achieve high Q-factor (~100,000 at 30kHz) by optimized geometric design and fabrication procedures for smooth surfaces
 - Realize bandwidth-tunable MEMS filters by applying mechanical coupling
- Perform noise analysis and compression of MEMS tunneling accelerometer using Kalman filtering and LQG (Linear-Quadratic-Gaussian) controller

1999-2000 Telecommunication product support engineer, Huawei Technologies, China

• Provide technical support for telephone switching system (C&C08) and optical network

1996-1999 M. S. Research Assistant, Peking University, China

- Simulate the performance and optimize the design of a capacitive accelerometer and a coriolis-force-based vibratory MEMS gyroscope
- Develop software combining the BEM (Boundary-Element-Method) with the FEM (Finite-Element-Method) to simulate MEMS with deformable components

Invited Talks

Veeco Instruments, Santa Barbara, CA

Sept. 2006

- In-fluid cantilever dynamics and AFM design: fluid damping and fluid loading Rowland Institute at Harvard Dec. 2006
 - In-fluid AFM cantilever dynamics and Gecko-inspired reversible adhesive design

Publication

- 1. W. Zhang, K.L. Turner, *Fluid Damping and Loading Effects of MEMS Flexural Resonators: Theory and Applications*, Physical Review, 2007, to be submitted
- 2. W. Zhang, K.L. Turner, Frequency Dependent Fluid Damping of Micro/Nano Flexural Resonators: Experiment, Model and Analysis, Sensors and Actuators A, 2006, Accepted
- W. Zhang, M. Requa, K.L. Turner, Determination of Frequency Dependent Fluid Damping of Micro and Nano Resonators for Different Cross-Sections, Nanotech 2006, Boston, MA USA, May 2006
- W. Zhang, K.L. Turner, Pressure-Dependent Damping Characteristics of Micro Silicon Beam Resonator for Different Resonant Modes, IEEE Sensors 2005, Irvine, CA Oct 31st- Nov 3rd 2005
- W. Zhang, Wenhua Zhang, K.L. Turner, Nonlinear Dynamics of Micro Impact Oscillators in High Frequency MEMS Switch Application, Transducers 2005, Coex, Seoul Korea, June 5-9, 2005
- 6. W. Zhang, K.L. Turner, *Thermoelastic damping in the longitudinal vibration: analysis and simulation*, Proceedings of 2004 ASME International Mechanical Engineering Congress, Anaheim, CA USA, Nov 13-19, 2004

- Wenhua Zhang, W. Zhang, K.L. Turner, P.G. Hartwell, SCREAM'03: A Single mask process for high-Q single crystal silicon MEMS, Proceedings of 2004 ASME International Mechanical Engineering Congress, Anaheim, CA USA, Nov 13-19, 2004
- 8. C. Wang, C. Xiong, W. Zhang, J. Fang, Z. Li, *Testing and simulation of novel MEMS relays by applying digital image correlation technology*, The first IEEE international conference on sensors, Florida USA, June 2002
- J. Fang, W. Zhang, C. Wang, Z. Li, D. Zhang, Electromechanical analysis of microelectromechanical structures and dynamic simulations of laterally vibratory microgyroscope, SPIE Proc. Vol.4407, p68-77, Edinburgh UK, May 2001

References

• Professional References

Professor Kimberly L. Turner Dept. of Mechanical Engineering, UCSB turner@engineering.ucsb.edu 1-805-893-5106 Professor George Homsy Dept. of Mechanical Engineering, UCSB bud@engineering.ucsb.edu 1-805-893-2704 Dr. Craig Prater (Veeco Fellow) Veeco Instruments, Santa Barbara, CA <u>cprater@veeco.com</u> 1-805-967-2700 (Ext. 2249)

• <u>Research Colleague References</u>

Dr. Michael Requa Dept. of Physics, UCSB requa@engineering.ucsb.edu 1-805-893-5218 Barry Demartini (Ph.D Candidate) Dept. of Mechanical Engineering, UCSB baredog@umail.ucsb.edu 1-805-893-7849 **Dr. Wenhua Zhang** Hewlett-Packard Research Labs (Palo Alto, CA) wenhua zhang@hp.com 1-650-857-2266